

Electrical and Computer Engineering Department

Summer Semester 2017	Digital Systems (ENCS	234)	Final Exam
Allowed Time: <u>150 minutes</u>	Date: 29/08/2017		Room: Masri109
Instructor: Dr. Abdellatif Abu-Issa		□ Dr. A	hmad Alsadeh

Student Name: ______Student ID: _____

Question #	Full Mark	Student Mark
Q1	40	
Q2	14	
Q3	12	
Q4	12	
Q5	22	
TOTAL	100	

Note: write your solution on the space provided. If you need more space, write on the back of the sheet containing the question.

Q1] Select the correct answer (4<u>0 points, 2.5 points each</u>):

- 1) In octal, the twelve-bit two's complement of the hexadecimal number $2AF_{16}$ is
 - A. 6522₈
 - B. 62518
 - C. 5261₈
 - D. 65218
- 2) Which of the following functions is the constant 1 function?
 - A. x' + xy
 - B. xy + x' + xy'
 - C. xy'(x' + y)
 - D. (x' + y)(xy)
- 3) Which of the following is equal to $F(x, y) = \sum (m_0, m_0)$
 - A. xy + x'y
 - B. x.y' + x'.y
 - C. (x + y')(x' + y)
 - D. (x' + y')(x + y)
- 4) How may 2-to-4 decoders with enable input should be used to make a 6-to-64 decoder?
 - A. 19
 - B. 18
 - C. 20
 - D. 21
- 5) The following function has ____ Essential prime implicants
 - A. 2
 - B. 4
 - C. 5
 - D. 8

AB	00	01	11	10
00			1	
01	1	1	1	
11		1	1	1
10		1		

- 6) Which function is the best for implementing the following function with two level NOR-OR form
 - A. F = x'y'z' + xyz'B. F = x'y + xy' + zC. F = (x'y + xy' + z)'D. F = [(x + y + z)(x' + y' + z)]'
- 7) The following two circuits have the same functionality of
 - A. 2-input OR gate
 - B. 2-input NOR gate
 - C. 2-input XOR gate
 - D. 2-input XNOR gate

- A. OR
- B. NOR
- C. XOR
- D. XNOR
- 9) Implementation of a full adder with an active low decoder and two
 - A. OR gates
 - B. NOR gates
 - C. AND gates
 - D. NAND gates

HA

10) Two 'T' Flip-Flops, A and B, are used to implement a sequential circuit. To go from state "AB =

HA

- 10'' to "*AB* = 11'' we need:
 - A. $T_A = 0, T_B = 0$
 - B. $T_A = 0, T_B = 1$
 - C. $T_A = 1, T_B = 0$
 - D. $T_A = 1, T_B = 1$

??

S

11) If the present state (*ABC*) is 110, and the input x = 0; what will be the next state if the flip flops input functions are:

 $J_A = B'x, K_A = 1;$ $J_B = A + C'x, K_B = xC' + Cx';$ $J_C = Ax + A'B'x', K_C = x$ A. 111 B. 001 C. 010 D. 011

13) Number of data bits that can be stored in the register shown below is _____ and number of clock cycles needed to store data is _____.

14) The sequence of counting in decimal for the counter shown below is

Clr	Clk	LD	Count	Operation
Х	0	Х	Х	Clear to 0
1	1	1	Х	Load inputs
1	1	0	1	Count up
1	1	0	0	No change

- A. 6, 7, 8, 9, 10, 6...
- B. 12, 11, 10, 9, 8, 7, 6, 12, ...
- C. 6, 7, 8, 9, 10, 11, 12, 6, ...
- D. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, ...

15) If *Load* input is zero, then the circuit will ______ when the clock is received.

- A. Count up
- B. count down
- C. No change of the state
- D. Parallel load the inputs $(I_0 ... I_3)$

16) The serial transfer shown in Figure below consists of two 4-bit shift registers (*A* and *B*). Assume that the initial contents of registers *A* and *B* is 1011 and 0010 respectively. After 2 clock pulses, what would be the content of registers *A* and *B*.

Answering Sheet for Question 1

1)	
2)	
3)	
4)	
5)	
6)	
7)	
8)	
9)	
10)	
11)	
12)	
13)	
14)	
15)	
16)	

Present State	Next State		Out	put
	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1
А	F	В	0	0
В	Е	G	0	0
С	С	G	0	0
D	А	С	1	1
E	Е	D	0	0
F	А	В	0	0
G	F	С	1	1

Q2] Given the state table below, minimize the number of states using implication chart method. Write down the equivalent states and the reduced table. (**14 points**)

Q3] For the system shown in the following figure (12 points)

- a) (4 pts) Write a Verilog behavioral description for the module mux2to1
- b) (4 pts) Write a Verilog behavioral description for the module dec2to4
- c) (4 pts) Write a Verilog code to describe the whole system structurally from its subsystems

Q4] For the following circuit (12 points)

- a) (2 pts) Is it ripple or synchronous and why?
- **b)** (6 pts) Draw the timing diagram Starting from $(Q_2Q_1Q_0=000)$

c) (4 pts) Draw the state diagram

Q5] Design a counter circuit that repeats five states in sequence; 000, 010, 011, 101, 110, 000 using D- Flip flops. The circuit is to be designed by treating the unused states as don't-care conditions. (**22 points**)

- a) (2 pts) Draw the state diagram of the circuit.
- b) (6 pts) Tabulate the state transition table.
- c) (6 pts) Derive the state equations for the flip-flops.
- d) (4 pts) Implement the counter using D- Flip flops and the needed gates
- e) (4 pts) Analyze the circuit obtained from the design to determine the effect of the unused states. What will happen if a noise signal sends the circuit to one of the unused states?