Electrical and Computer Engineering Department

Summer Semester 2017
Allowed Time: 150 minutes

Final Exam
Room: Masri109
Instructor: \square Dr. Abdellatif Abu-Issa $\quad \square$ Dr. Ahmad Alsadeh
\qquad Student ID: \qquad

Question \#	Full Mark	Student Mark
Q1	40	
Q2	14	
Q3	12	
Q4	12	
Q5	22	
TOTAL	100	

Note: write your solution on the space provided. If you need more space, write on the back of the sheet containing the question.

Q1] Select the correct answer (40 points, 2.5 points each):

1) In octal, the twelve-bit two's complement of the hexadecimal number $2 \mathrm{AF}_{16}$ is
A. 6522_{8}
B. 6251_{8}
C. 5261_{8}
D. 6521_{8}
2) Which of the following functions is the constant $\mathbf{1}$ function?
A. $x^{\prime}+x y$
B. $x y+x^{\prime}+x y^{\prime}$
C. $x y^{\prime}\left(x^{\prime}+y\right)$
D. $\left(x^{\prime}+y\right)(x y)$
3) Which of the following is equal to $F(x, y)=\sum\left(m_{0}, m_{0}\right)$
A. $x y+x^{\prime} y$
B. $x \cdot y^{\prime}+x^{\prime} \cdot y$
C. $\left(x+y^{\prime}\right)\left(x^{\prime}+y\right)$
D. $\left(x^{\prime}+y^{\prime}\right)(x+y)$
4) How may 2 -to- 4 decoders with enable input should be used to make a 6 -to- 64 decoder?
A. 19
B. 18
C. 20
D. 21
5) The following function has \qquad Essential prime implicants
A. 2
B. 4
C. 5
D. 8

$A B C^{C L}$	00	01	11	10
00			1	
01	1	1	1	
11		1	1	1
10		1		

6) Which function is the best for implementing the following function with two level NOR-OR form
A. $F=x^{\prime} y^{\prime} z^{\prime}+x y z^{\prime}$
B. $F=x^{\prime} y+x y^{\prime}+z$
C. $F=\left(x^{\prime} y+x y^{\prime}+z\right)^{\prime}$
D. $F=\left[(x+y+z)\left(x^{\prime}+y^{\prime}+z\right)\right]^{\prime}$

7) The following two circuits have the same functionality of
A. 2-input OR gate
B. 2-input NOR gate
C. 2-input XOR gate
D. 2-input XNOR gate

8) Implementation of full adder with two half adders and an \qquad gate
A. OR
B. NOR
C. XOR
D. XNOR

9) Implementation of a full adder with an active low decoder and two
A. OR gates
B. NOR gates
C. AND gates
D. NAND gates

10) Two 'T' Flip-Flops, A and B, are used to implement a sequential circuit. To go from state " $A B=$ 10 " to " $A B=11$ " we need:
A. $\mathrm{T}_{\mathrm{A}}=0, \mathrm{~T}_{\mathrm{B}}=0$
B. $\mathrm{T}_{\mathrm{A}}=0, \mathrm{~T}_{\mathrm{B}}=1$
C. $\mathrm{T}_{\mathrm{A}}=1, \mathrm{~T}_{\mathrm{B}}=0$
D. $\mathrm{T}_{\mathrm{A}}=1, \mathrm{~T}_{\mathrm{B}}=1$
11) If the present state $(A B C)$ is 110 , and the input $x=0$; what will be the next state if the flip flops input functions are:
$\boldsymbol{J}_{A}=B^{\prime} x, K_{A}=1 ; \quad \boldsymbol{J}_{\boldsymbol{B}}=A+C^{\prime} x, \boldsymbol{K}_{\boldsymbol{B}}=x C^{\prime}+C x^{\prime} ; \quad \boldsymbol{J}_{C}=A x+A^{\prime} B^{\prime} x^{\prime}, \quad \boldsymbol{K}_{\boldsymbol{C}}=x$
A. 111
B. 001
C. 010
D. 011
12) If $\mathrm{S}_{1}=1, \mathrm{~S}_{0}=0$ when the Clock is received, then $A_{0}(t+1)$ and $A_{1}(t+1)$ will be
A. $A_{0}(t+1)=L \quad A_{1}(t+1)=A_{0}$
B. $A_{0}(t+1)=A_{1} \quad A_{1}(t+1)=R$
C. $A_{0}(t+1)=I_{0} \quad A_{1}(t+1)=I_{1}$
D. $A_{0}(t+1)=A_{0} \quad A_{1}(t+1)=A_{1}$

13) Number of data bits that can be stored in the register shown below is \qquad and number of clock cycles needed to store data is \qquad —.
A. 4,1
B. 4,4
C. 8,1
D. 8,4

14) The sequence of counting in decimal for the counter shown below is

Clr	Clk	LD	Count	Operation
x	0	x	x	Clear to 0
1	\uparrow	1	x	Load inputs
1	\uparrow	0	1	Count up
1	\uparrow	0	0	No change

A. $6,7,8,9,10,6 \ldots$
B. $12,11,10,9,8,7,6,12, \ldots$
C. $6,7,8,9,10,11,12,6, \ldots$
D. $0,1,2,3,4,5,6,7,8,9,10,11,12,0, \ldots$
15) If Load input is zero, then the circuit will \qquad when the clock is received.
A. Count up
B. count down
C. No change of the state
D. Parallel load the inputs $\left(\mathrm{I}_{0} \ldots \mathrm{I}_{3}\right)$

16) The serial transfer shown in Figure below consists of two 4 -bit shift registers (A and B). Assume that the initial contents of registers A and B is 1011 and 0010 respectively. After 2 clock pulses, what would be the content of registers A and B.

A. $\mathrm{A}=1011$
$B=1011$
B. $\mathrm{A}=1101$
$B=1001$
C. $A=1110$
$B=1100$
D. $\mathrm{A}=0111$
$B=0110$

Answering Sheet for Question 1

1)	
2)	
3)	
4)	
5)	
6)	
7$)$	
8)	
9)	
10$)$	
11$)$	
12$)$	
13$)$	
14$)$	
15$)$	
16$)$	

Q2] Given the state table below, minimize the number of states using implication chart method. Write down the equivalent states and the reduced table. ($\mathbf{1 4}$ points)

Present State	Next State		Output	
	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
A	F	B	0	0
B	E	G	0	0
C	C	G	0	0
D	A	C	1	1
E	E	D	0	0
F	A	B	0	0
G	F	C	1	1

Q3] For the system shown in the following figure ($\mathbf{1 2}$ points)

a) (4 pts) Write a Verilog behavioral description for the module mux2to1
b) ($\mathbf{4} \mathbf{p t s}$) Write a Verilog behavioral description for the module dec 2 to 4
c) (4 pts) Write a Verilog code to describe the whole system structurally from its subsystems

Q4] For the following circuit (12 points)

a) (2 pts) Is it ripple or synchronous and why?
b) (6 pts) Draw the timing diagram Starting from $\left(Q_{2} Q_{1} Q_{0}=000\right)$

c) (4 pts) Draw the state diagram

Q5] Design a counter circuit that repeats five states in sequence; $000,010,011,101,110,000$ using D- Flip flops. The circuit is to be designed by treating the unused states as don't-care conditions. (22 points)
a) ($\mathbf{2} \mathbf{~ p t s}$) Draw the state diagram of the circuit.
b) $(6 \mathrm{pts})$ Tabulate the state transition table.
c) ($6 \mathbf{p t s}$) Derive the state equations for the flip-flops.
d) (4 pts) Implement the counter using D- Flip flops and the needed gates
e) (4 pts) Analyze the circuit obtained from the design to determine the effect of the unused states. What will happen if a noise signal sends the circuit to one of the unused states?

